STUDY ON TENSILE MECHANICAL PROPERTY AND MICROSTRUCTURE OF FRUIT AND VEGETABLE PEELS
果蔬果皮拉伸力学性质与微观结构的研究
DOI : https://doi.org/10.35633/inmateh-59-25
Authors
(*) Corresponding authors:
Abstract
Fruit and vegetable peels exert a protective effect on fruits as constituent parts of the outermost tissue and their properties are of great importance to reducing fruit and vegetable mechanical injury. Four kinds of fruit and vegetable peels such as Nagafu apple, Crisp pear, Tainong mango and long eggplant were chosen to perform longitudinal and transverse tests of tensile property by means of electronic universal testing machine. Stress-strain curve, tensile strength, elastic modulus and fracture strain of peels were obtained; and the microstructures of four kinds of peels were scanned using an electron microscope (SEM). The results indicated that cubic polynomials proved superior for quantifying the stress-strain non-linear relationship of peels and the fitting error of tensile strength is less than 10 parts per thousand. Tensile strength, elastic modulus and fracture strain of peels were different in the case of different fruits and vegetables cultivated and different parts of the same peel; fruit and vegetable peels belong to anisotropic heterogeneous materials and have certain strength. The mean values of tensile strength and fracture strain of the long eggplant peel are the biggest in four kinds of peels and that of elastic modulus of Nagafu apple peel is the largest; long eggplant and Nagafu apple peels had better resistance to damage sensibility than Crisp pear peel. The bearing capacity of the peels depends on the number, width and distribution of microcracks on the surface, and the shape of the epidermal cells and fruit dot on peels; the number of microcracks is bigger and the width of microcracks is wider, the tensile strength is smaller and the elastic modulus of peel is bigger with the slippage increase of epidermis cells. This study provides basic technical parameters for mechanical equipment design for fruit and vegetable during harvesting, processing, packaging, storing and transporting and builds the correlations between macro-mechanics properties and microstructures of fruit and vegetable peels.
Abstract in Chinese