PREDICTION MODEL OF AMMONIA CONCENTRATION IN YELLOW-FEATHER BROILERS HOUSE DURING WINTER BASED ON EEMD-GRU
基于EEMD-GRU的黄羽鸡舍冬季氨气浓度预测模型
DOI : https://doi.org/10.35633/inmateh-61-07
Authors
(*) Corresponding authors:
Abstract
In winter, the poor ventilation conditions in broiler houses may lead to high ammonia concentration, which affects the health of yellow-feather broilers or even causes the death of many broilers. This research used a machine learning model to predict the ammonia concentration in a broiler house during winter. After analysis, it was found that the ammonia generation in the broiler house was a gradual accumulation featured by non-linear data. After the broilers entered the broiler house for several days, and the ammonia concentration reached a certain value, a ventilation system was used for regulating the concentration. Firstly, the back-propagation (BP) neural network model and gated recurrent unit (GRU) model were used for predicting the ammonia concentration, respectively. Then, ensemble empirical mode decomposition (EEMD) was performed on the time series data of ammonia concentration in the broiler house. After that, the EEMD-GRU prediction model has been established for the intrinsic mode function (IMF) components and the temperature and humidity data in the broiler house. Finally, all component results were summarized to obtain the final prediction result. A comparison was conducted among the prediction results obtained by the above three models. The results show that the root mean square errors of the above three models are 6.2 ppm, 4.4 ppm, and 2.4 ppm, respectively, and the average absolute errors were 4.9 ppm, 2.8 ppm, and 1.6 ppm, respectively. It could be seen that the EEMD-GRU model had higher accuracy in predicting the ammonia concentration in the broiler house. The EEMD-GRU model can effectively predict the ammonia concentration in broiler houses, facilitating the feedback to the central system for timely adjustment.
Abstract in Chinese