PHENOTYPIC PARAMETER EXTRACTION FOR WHEAT EARS BASED ON AN IMPROVED MASK-RCNN ALGORITHM
基于改进Mask-RCNN算法的麦穗表型参数提取
DOI : https://doi.org/10.35633/inmateh-66-27
Authors
(*) Corresponding authors:
Abstract
The acquisition of traditional wheat ear phenotypic parameters is labour intensive and subjective, and some trait parameters are difficult to measure, which greatly limits the progress of wheat ear research. To obtain the phenotypic parameters of wheat ears in batches at a low cost, this paper proposed a convenient and accurate method for extracting phenotypic parameters of wheat ears. First, three improvement directions were proposed based on the Mask-RCNN model. 1) To extract the multiscale features of wheat ears, a hierarchical residual link was constructed in a single residual block of the backbone network ResNet101 to obtain information on different sizes of receptive fields. 2) The FPN was improved to increase the recognition accuracy of wheat ear edges through multiple two-way information flow sampling. 3) The mask evaluation mechanism was improved, specific network blocks were used to learn and predict the quality of the mask, and the detection of wheat ears and grains was performed by precise segmentation; an automatic extraction algorithm was designed for wheat ear phenotypic parameters based on the segmentation results to extract 22 phenotypic parameters. The experiments showed that the improved Mask-RCNN was superior to the existing model in the segmentation accuracy of wheat ears and grains; the parameters of wheat ear length, width, and number of grains extracted by the automatic extraction algorithm were close to the manual measurement values. This research meets the demand for automatic extraction of wheat ear phenotype data for large-scale quality testing and commercial breeding and has strong practicability.
Abstract in Chinese