thumbnail

Topic

Technologies and technical equipment for agriculture and food industry

Volume

Volume 68 / No. 3 / 2022

Pages : 91-98

Metrics

Volume viewed 0 times

Volume downloaded 0 times

TECHNOLOGY OF ADJUSTING THE HEADER HEIGHT OF THE HARVESTER BY MULTI-SENSOR DATA FUSION BASED ON BP NEURAL NETWORK

基于BP神经网络的多传感器数据融合调节收割机割台高度

DOI : https://doi.org/10.35633/inmateh-68-09

Authors

Kuizhou JI

jiangsu university

(*) Yaoming LI

jiangsu university

Tao ZHANG

jiangsu university

Shengbo XIA

jiangsu university

(*) Corresponding authors:

[email protected] |

Yaoming LI

Abstract

In this paper, BP neural network is used to collect header height, AMEsim is used to simulate and analyze header height adjustment hydraulic system, and fuzzy PID control is used to adjust header lifting hydraulic cylinder to stabilize header height. The experimental results of harvesting different crops show that under the header height automatic control system, the error between the actual height of crop harvesting and the set height is within 15 mm, and the harvesting effect is good, which can meet the automatic regulation requirements of the header height of the multi crop combine harvester.

Abstract in Chinese

为了提高调节的精度,采用BP神经网络多传感器融合处理技术采集割台实时高度,通过AMEsim软件对割台高度调节液压系统进行仿真分析,最后采用模糊PID控制比例电磁阀调节割台升降液压缸从而稳定割台高度。通过收获油菜、谷子和水稻的试验结果证明:在割台高度自动控制系统下,作物收获的实际高度与设定高度误差在15mm以内,收获效果较好,作物割茬高度较为平整,满足多作物联合收获机割台高度自动调控需求。

IMPACTFACTOR0CITESCORE0

Indexed in

Clarivate Analytics.
 Emerging Sources Citation Index
Scopus/Elsevier
Google Scholar
Crossref
Road