thumbnail

Topic

Technologies and technical equipment for agriculture and food industry

Volume

Volume 70 / No. 2 / 2023

Pages : 487-496

Metrics

Volume viewed 0 times

Volume downloaded 0 times

IOT-BASED EVAPOTRANSPIRATION ESTIMATION OF PEANUT PLANT USING DEEP NEURAL NETWORK

ESTIMASI EVAPOTRANSPIRASI TANAMAN KACANG TANAH BERBASIS IOT MENGGUNAKAN DEEP NEURAL NETWORK

DOI : https://doi.org/10.35633/inmateh-70-47

Authors

Suhardi SUHARDI

Jember University

Bambang MARHAENANTO

Jember University

(*) Bayu Taruna Widjaja PUTRA

Jember University

Sugeng WINARSO

Jember University

(*) Corresponding authors:

[email protected] |

Bayu Taruna Widjaja PUTRA

Abstract

The water availability in soil strongly influences crop growth by sustaining photosynthesis, respiration, and the maintenance of plant temperature. The water availability will decrease due to crop evapotranspiration (ETc) which is influenced by reference evapotranspiration (ETo) and crop coefficient (Kc). During water shortage, Kc is strongly influenced by soil evaporation coefficient (Ke) and basal crop coefficient (Kcb) which can be calculated using the Blue Red Vegetation Index (BRVI). The purpose of this study was to apply and evaluate a new method of estimating ETo, Ke, and Kcb at a research site using a Deep Neural Network (DNN) with minimum requirements. The results of the ETo estimation using DNN shows a good output with a determinant coefficient (R2) being 0.774. Meanwhile, the estimates of Ke and Kcb show excellent results with the determinant coefficient (R2) being 0.9496 and 0.999 respectively.

Abstract in Indonesian

Ketersediaan air dalam tanah sangat mempengaruhi pertumbuhan tanaman untuk mempertahankan fotosintesis, respirasi, dan pemeliharaan suhu tanaman. Ketersediaan air akan berkurang akibat evapotranspirasi tanaman (ETc) yang dipengaruhi oleh evapotranspirasi referensi (ETo) dan koefisien tanaman (Kc). Pada saat kekurangan air, Kc sangat dipengaruhi oleh koefisien penguapan tanah (Ke) dan basal crop koefisien (Kcb) yang dapat dihitung dengan menggunakan Normalized Difference Vegetation Index (NDVI). Tujuan dari penelitian ini adalah untuk menerapkan dan mengevaluasi metode baru estimasi ETo, Ke, dan Kcb di lokasi penelitian menggunakan Deep Neural Network (DNN) dengan persyaratan minimum. Hasil estimasi ETo, Ke dan Kcb merupakan keluaran yang sangat baik.

IMPACTFACTOR0CITESCORE0

Indexed in

Clarivate Analytics.
 Emerging Sources Citation Index
Scopus/Elsevier
Google Scholar
Crossref
Road