OPTIMIZED DESIGN AND TESTING OF A PEANUT-PICKING DEVICE WITH A LARGE FEEDING VOLUME
花生大喂入量摘果装置优化设计与试验
DOI : https://doi.org/10.35633/inmateh-70-39
Authors
(*) Corresponding authors:
Abstract
For a peanut picking device with a feeding rate greater than 5 kg/s, the problem of low picking rate and high damage rate will occur during the picking process. A discrete element model is developed to determine the range of values of the main influencing factors affecting the peanut picking device. A three-factor, three-level orthogonal combination test was carried out with feeding volume, drum speed, and peanut picking gap as test factors to investigate the effects of the main influencing factors on the quality of peanut picking operation of the peanut picking device. The results of the field trials showed that the best results were achieved at the optimum combination of drum speed of 508 r·min-1, peanut picking gap of 22 mm, and feeding volumes of 6.3 kg/s. At this time, the peanut picking rate was 99.17%, and the peanut breakage rate was 0.91, meeting the standard technical requirements for mechanized peanut harvesting. The study results provide a theoretical basis for further enhancing the development of peanut combine harvesting equipment.
Abstract in Chinese