DESIGN AND EXPERIMENT OF OVERLOAD PROTECTION AND AUTOMATIC OBSTACLE AVOIDANCE MECHANISM FOR BIDIRECTIONAL PLOUGHING EQUIPMENT
双向犁耕防过载自动避障机构的设计与试验
DOI : https://doi.org/10.35633/inmateh-71-52
Authors
(*) Corresponding authors:
Abstract
During the tillage of two-way ploughing equipment in rocky and barren soil, due to hard objects such as stones, the plough and the key working parts such as plough column are deformed and broken, thereby reducing the reliability and service life of machines and tools. As such, an anti-overload automatic obstacle avoidance mechanism for two-way ploughing is developed. The maximum obstacle avoidance height is 40 cm, and the obstacle avoidance angle α is designed. The rotation range is 4.6 ~51.5°, and the effective compression stroke of the spring after pre-tightening is 39.34 mm. The motion equation and quasi-static force equation of the mechanism are established. The plowing resistance in the equilibrium state is 9.74 KN, and the required spring preload is 9.75 KN. Under the safety factor of 1.3, different spring elastic coefficients change with the rotation angle of the mechanism. The virtual prototype simulation model of the anti-overload automatic obstacle avoidance mechanism is established. The simulation results show that the mechanism can effectively perform the obstacle avoidance action. Bench test verifies that the mechanism can avoid obstacles according to the predetermined load. The field test shows that the stability coefficient of the ploughing depth of the mechanism is less than 8%. The results can effectively realize the obstacle avoidance function and ensure the farming quality, and provide an efficient and reliable anti-overload obstacle avoidance structure and parameter basis for the rocky land.
Abstract in Chinese