thumbnail

Topic

Technologies and technical equipment for agriculture and food industry

Volume

Volume 72 / No. 1 / 2024

Pages : 129-137

Metrics

Volume viewed 0 times

Volume downloaded 0 times

CROP TYPE MAPPING USING MACHINE LEARNING-BASED APPROACH AND SENTINEL-2: STUDY IN LUMAJANG, EAST JAVA, INDONESIA

PEMETAAN JENIS TANAMAN MENGGUNAKAN PENDEKATAN MACHINE LEARNING DAN SENTINEL-2: STUDI DI LUMAJANG, JAWA TIMUR, INDONESIA

DOI : https://doi.org/10.35633/inmateh-72-12

Authors

Irsyam MAHRUS

University of Jember

(*) Indarto INDARTO

University of Jember

Khristianto WHENY

University of Jember

Arif Kurnianto FAHMI

University of Jember

(*) Corresponding authors:

[email protected] |

Indarto INDARTO

Abstract

In general, sentinel-2 imagery can be used for crop mapping. Crop types mapping aims to develop future strategies for sustainable agricultural systems. This study used Sentinel-2 from June 25 to July 6, 2023, with 10% cloud cover. The research was conducted in Pasrujambe and Candipuro sub-districts (± 242.23 km2). The image is processed using a random forest on the GEE platform. Accuracy was generated using a confusion matrix with an overall accuracy of 85.82% and a kappa of 71.19%. Five main types of land use/cover were produced, namely: paddy (17.31%), sugarcane (0.93%), vegetation (69.74%), sand (7.4%) and built-up land (4.59%).

Abstract in Indonesian

Secara umum, citra sentinel-2 dapat digunakan untuk pemetaan tanaman. Pemetaan jenis tanaman bertujuan untuk mengembangkan strategi masa depan untuk sistem pertanian berkelanjutan. Penelitian ini menggunakan Sentinel-2 pada tanggal 25 Juni hingga 6 Juli 2023 dengan tutupan awan 10%. Penelitian dilakukan di Kecamatan Pasrujambe dan Candipuro (± 242,23 km2). Gambar diproses menggunakan random forest pada platform GEE. Akurasi dihasilkan menggunakan matriks konfusi dengan akurasi keseluruhan sebesar 85,82% dan kappa sebesar 71,19%. Lima jenis penggunaan/tutupan lahan utama yang dihasilkan, yaitu: padi (17,31%), tebu (0,93%), vegetasi (69,74%), pasir (7,4%) dan lahan terbangun (4,59%).

Indexed in

Clarivate Analytics.
 Emerging Sources Citation Index
Scopus/Elsevier
Google Scholar
Crossref
Road