CHERRY SEGMENTATION AND IDENTIFICATION BASED ON DEEPLABV3 IN COMPLEX ORCHARD ENVIRONMENT
基于DEEPLABV3的复杂果园环境下樱桃分割与识别
DOI : https://doi.org/10.35633/inmateh-72-61
Authors
(*) Corresponding authors:
Abstract
Aiming at the problems of less research on cherry segmentation and identification, and slow recognition speed and low classification accuracy with agricultural products, a method based on DeepLabV3 was proposed to realize the rapid segmentation and identification of cherry in complex orchard environment. Complex environment mainly includes frontlighting, backlighting, cloudy and rainy days, single fruit, multi fruit, fruit overlap, and branch and leaf occlusion. This model proposed the atrous spatial pyramid pooling (ASPP) module to effectively extract multi-scale contextual information, and solved the problem of target segmentation at multiple scales. The obtained data was divided into training, validation and testing sets in a 7:1:2 ratios, and the ResNet50 was selected as backbone of the network. Experimental results show that the algorithm in this paper can segment cherry quickly and accurately, the mean intersection over union (MIoU) was 91.06%, the mean pixel accuracy (MPA) was 93.05%, and the kappa coefficient was 0.89, which was better than fully convolutional networks (FCN), SegNet, DeepLabV1 and DeepLabV2. It is demonstrated that this study can provide technical support for intelligent segmentation of agricultural products.
Abstract in English