DESIGN AND EXPERIMENT OF A MULTI-CHANNEL REAL-TIME WEIGHING DEVICE
多路实时称量装置设计与试验
DOI : https://doi.org/10.35633/inmateh-73-28
Authors
(*) Corresponding authors:
Abstract
During the sowing operation, the consistency and stability of the row dispenses of a seeder are important indicators for evaluating sowing performance. A multi-channel real-time weighing device was designed to study and analyze the consistency of row dispenses in seeder under identical conditions, as well as the stability of dispenses from a seed dispenser. This device utilized two Arduino boards as controllers for data acquisition, processing, and transmission. Based on the Serial Peripheral Interface (SPI), data exchange between multiple Arduinos was achieved in a master-slave configuration, allowing for data acquisition from 14 pressure sensors in a one-master, one-slave setup. Pressure data was collected using pressure sensors, HX711 converter chips, and Arduino. LabVIEW was utilized as the upper computer to read data from the Arduino host serial port and provide real-time display and storage. This paper presents the structural and working principles of the device. Experimental tests on the weighing unit were conducted using a test bench to evaluate measurement errors. The absolute error mean ranged from 0.143 g to 0.262 g. Additionally, the impact of the seed impact force on the error was simulated using EDEM. The device was used to evaluate a six-row wheat seeder under the experimental conditions of the groove wheel having a length of 2.5 cm and a groove wheel speed of 25 r/min. The maximum coefficient of variation for seeding stability (Y1) was 2.38%, the minimum was 0.83%, and the mean was 1.21%. The coefficient of variation for consistency of seeding in rows (Y2) was 1.86%.
Abstract in Chinese