RESEARCH ON THE STEERING CHARACTERISTICS OF ELECTRO-HYDRAULIC COUPLED STEERING SYSTEM OF SELF-DRIVING TRACTOR
自动驾驶拖拉机电液耦合转向特性研究
DOI : https://doi.org/10.35633/inmateh-73-51
Authors
(*) Corresponding authors:
Abstract
To solve the problem of poor steering performance of existing self-driving tractors based on electro-hydraulic coupled steering systems (E-HCSS) under multiple influencing factors, the research on electro-hydraulic coupled steering characteristics of self-driving tractors was carried out in this paper. Taking the electro-hydraulic coupled steering system as the research object, the E-HCSS test bench of the tractor was built, and the influencing factors affecting the responsiveness of the steering process were obtained through theoretical analysis: hydraulic fluid temperature, oil supply pressure and driving speed. The hydraulic fluid temperature, oil supply pressure and driving speed were taken as the test factors, and the steering system response time and response error were taken as the performance indexes for the single-factor steering test and orthogonal test. By establishing the regression mathematical model between the influencing factors and the indexes, the interactive influence of the factors on the indexes was analyzed, the optimal parameter combination was obtained, and the optimization results were verified. The test results indicated that the tractor electro-hydraulic coupling steering system could achieve good steering performance under the optimal parameter combination, and the optimal parameter combination was: hydraulic oil temperature 60°C, hydraulic oil pressure 15 MPa and driving speed 8 km/h. The study's results were as follows: hydraulic oil temperature 60°C, hydraulic oil pressure 15 MPa and driving speed 8 km/h. The study's results could provide a reference for the steering control of the self-driving tractor, the design of the self-driving steering system and the optimization of the parameters.
Abstract in Chinese