thumbnail

Topic

Technical equipment testing

Volume

Volume 75 / No. 1 / 2025

Pages : 865-877

Metrics

Volume viewed 0 times

Volume downloaded 0 times

DESIGN AND TESTING OF SPIRAL CUTTER TOOTH TYPE FARMLAND STONE PICKER

螺旋刀齿式农田捡石机的设计与试验

DOI : https://doi.org/10.35633/inmateh-75-74

Authors

Jia ZHANG

Xinjiang Institute of Engineering

Heng QU

Xinjiang Agricultural University

Ping XIAO

Xinjiang Institute of Engineering

Shaoteng Ma

Xinjiang Institute of Engineering

(*) Weisong ZHAO

Nanjing Institute of Agricultural Mechanization

(*) Corresponding authors:

304165686@qq.com |

Weisong ZHAO

Abstract

This study aimed to solve the inefficiency and high-energy-consumption problems of current agricultural stone pickers. It introduced a novel spiral cutter tooth design. Dynamic and kinematic analyses determined the key components' parameters and performance-influencing factors. With EDEM software, discrete element simulations using a three-factor, five-level quadratic regression orthogonal design were carried out. Stone-picking efficiency and power consumption were the evaluation metrics. Regression analysis and significance tests clarified the impact of forward speed, drum speed, and tilt angle. Multi - objective optimization of the regression model found the optimal parameters: 0.18 m/s forward speed, 260 rpm drum speed, and 30° tilt angle. Field tests with this setup achieved a 93.71% stone-picking rate and 4.63 kW stable power, validating the design's effectiveness. These results offer a theoretical basis and reference for stone picker design and optimization

Abstract in Chinese

针对现有农田捡石机捡石效率低,消耗功率大等问题,提出了一种螺旋刀齿式农田捡石机,通过动力学和运动学分析,确定了关键部件的结构参数和运动参数范围,以及影响工作性能的主要因素。利用EDEM软件开展了离散元仿真试验,采用三因素五水平二次回归正交旋转中心组合试验方法,以捡石效率和消耗功率为评价指标,对机具前进速度、螺旋刀辊转速和螺旋刀辊侧倾角进行回归分析和显著性检验,明确了各因素对评价指标的影响及主次顺序,通过对回归模型进行多目标函数优化求解,得出最佳参数组合为机具前进速度0.18 m/s、螺旋刀辊转速260 r/min、螺旋刀辊侧倾角30°。使用最佳参数组合进行了土槽试验,试验结果表明:捡石效率为93.71%,稳定作业时的功率为4.63 kW,螺旋刀齿式捡石机作业稳定,满足农田捡石作业要求

Indexed in

Clarivate Analytics.
 Emerging Sources Citation Index
Scopus/Elsevier
Google Scholar
Crossref
Road