thumbnail

Topic

Technologies and technical equipment for agriculture and food industry

Volume

Volume 76 / No. 2 / 2025

Pages : 572-581

Metrics

Volume viewed 0 times

Volume downloaded 0 times

DETERMINATION OF OIL PALM FRUIT MATURITY USING A PORTABLE INSTRUMENT BASED ON UV-VIS-NIR SENSOR

PENENTUAN KEMATANGAN BUAH KELAPA SAWIT MENGGUNAKAN INSTRUMEN PORTABEL BERBASIS SENSOR UV-VIS-NIR

DOI : https://doi.org/10.35633/inmateh-76-49

Authors

Yunisa Tri SUCI

IPB University

(*) I Wayan BUDIASTRA

IPB University

Y Aris PURWANTO

IPB University

Slamet WIDODO

IPB University

(*) Corresponding authors:

wbudiastra@apps.ipb.ac.id |

I Wayan BUDIASTRA

Abstract

This study developed a portable instrument using the AS7265x sensor (410–940 nm) for non-destructive oil palm maturity evaluation. Reflectance from 250 oil palm fruits at 10 maturity stages was measured by the instrument and processed with some spectra pre-treatments, then classified into three levels of maturity using principal component analysis (PCA). PCA with SNV pre-treatment explained 97% variance using PC1 and PC2. Classification was validated using support vector machines (SVM), random forest (RF), and K-nearest neighbors (KNN), with KNN achieving 100% accuracy. This approach enables a non-destructive and accurate classification of oil palm fruit maturity.

Abstract in Indonesian

Penelitian ini bertujuan mengembangkan alat portabel menggunakan sensor AS7265x (410–940 nm) untuk mengevaluasi tingkat kematangan kelapa sawit secara non-destruktif. Reflektansi dari 250 buah sawit pada 10 tingkat kematangan diukur oleh alat portabel dan dilakukan beberapa praperlakuan data spektra, kemudian diklasifikasikan ke dalam tiga tingkat kematangan menggunakan analisis komponen utama (PCA). PCA dengan praperlakuan Standard Normal Variate (SNV) mampu menjelaskan 97% varian melalui PC1 dan PC2. Klasifikasi divalidasi menggunakan Support Vector Machines (SVM), Random Forest (RF), dan K-Nearest Neighbors (KNN), dengan akurasi tertinggi 100% oleh KNN. Pendekatan ini memungkinkan klasifikasi kematangan buah sawit secara akurat dan non-destruktif.

Indexed in

Clarivate Analytics.
 Emerging Sources Citation Index
Scopus/Elsevier
Google Scholar
Crossref
Road