thumbnail

Topic

Technologies and technical equipment for agriculture and food industry

Volume

Volume 77 / No. 3 / 2025

Pages : 702-715

Metrics

Volume viewed 0 times

Volume downloaded 0 times

RESEARCH ON REAL-TIME CORN PEST DETECTION METHOD BASED ON CSPPC LIGHTWEIGHT MODULE AND WISE-IOU

基于CSPPC轻量化模块与WISE-IOU的玉米虫害实时检测方法研究

DOI : https://doi.org/10.35633/inmateh-77-57

Authors

Qiuyan LIANG

Jiamusi University

Haiyang YU

Jiamusi University

Aidi XU

Academy of Agricultural Machinery Engineering Sciences

Mengyuan JIA

Jiamusi University

(*) Jia CHI

Logistics Management Office,Jiamusi University

Jia ZHAO

Logistics Management Office, Jiamusi University, Jiamusi, Heilongjiang

(*) Corresponding authors:

chijia@jmsu.edu.cn |

Jia CHI

Abstract

ABSTRACT To address the issues of large number of parameters and low deployment efficiency on mobile devices in the existing YOLOv8-DSFF model for corn pest detection, this study proposes an improved object detection model that integrates the CSPPC lightweight module and the Wise-IoUv3 loss function. The optimized model reduces the number of parameters by 85.6%, achieves an mAP@0.5 of 90.8%, reaches 204 FPS inference speed on PC and 42 FPS on mobile devices. This provides a practical low-power solution for real-time field monitoring of corn pests.

Abstract in Chinese

摘要 此前玉米虫害识别研究中,YOLOv8-DSFF模型虽较其他检测模型优势显著,但存在参数量大、移动端部署效率低的问题。为此,研究提出融合CSPPC轻量化模块与Wise-IoUv3的目标识别模型改进方案。通过改进模型参数量降低85. 6%;模型mAP@0. 5达90. 8%;PC端推理速度204FPS;移动端帧率42FPS,可为田间实时监测提供低功耗方案。


Indexed in

Clarivate Analytics.
 Emerging Sources Citation Index
Scopus/Elsevier
Google Scholar
Crossref
Road